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31062 Toulouse Cedex 4, France

3 CRISMAT, 6 Bd Maréchal Juin, 14050 Caen Cedex, France
4 Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan

Received 24 January 2006 / Received in final form 14 March 2006
Published online 28 June 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. This work explores the possibility to transfer the parity law of the singlet-triplet gap established
for square ladders (gapped for even number of legs, gapless for odd number of legs) to fused polyacenic
1-D systems, i.e., graphite ribbons. Qualitative arguments are presented in favor of a gapped character
when the number nω of benzene rings along the ribbon width is odd. A series of numerical calculations
(quantitative mapping on spin 1/2 chains, renormalized excitonic treatments and Quantum Monte Carlo)
confirms the parity law and the gapless character of the ribbon for even nω.

PACS. 71.10.-W Theories and models of many-electron systems – 71.15.Nc Total energy and cohesive
energy calculations – 75.10.Jm Quantized spin models

1 Introduction

In the recent past the properties of some quasi 1-D
strongly correlated materials, namely cuprate ladders,
have attracted much interest from solid state physicists [1].
As a major result they have established that the spin gap
(i.e., lowest singlet to triplet excitation energy) of spin
1/2 ladders presents a parity law: the ladders are gapped
(have a finite excitation energy) when the number of legs
is even, and gapless (degenerate singlet and triplet states)
for odd number of legs [2]. This result was not expected,
since one may consider the ladders as intermediate be-
tween the simple 1-D chain and the square 2-D lattice,
which are both gapless.

Finite ribbons of fused polyacenes (with CH bonds on
the most external doubly-bonded carbons) can be seen as
organic analogs of the cuprate ladders. They are quasi 1-D
fragments of graphite, which is gapless. The non-dimerized
linear polyene is also known to be gapless. In light of the
recent investigations on both carbon and spin nanotubes,
we can extend the discussion on the link between magnetic
properties and geometry of such objects [3]. In particular,
are the fused polybenzenöıd ribbons always gapless?

Although the π-electrons of the conjugated hydrocar-
bons are not strongly correlated, it has been shown twenty
years ago that they can be treated accurately through

a e-mail: sylvain.capponi@irsamc.ups-tlse.fr

S = 1/2 Heisenberg Hamiltonians

H = J
∑

〈i,j〉
Si · Sj (1)

i.e., as spins interacting with their nearest neighbours
through antiferromagnetic (AF) couplings J > 0 [4,5].
This effective model is not based on the usual perturba-
tive approach in the strong coupling limit; instead the
amplitude of the exchange integral is given by the ex-
act solution of the 2-site problem. More explicitely, for
a Hubbard Hamiltonian, the AF coupling is no longer
taken as its perturbative estimate J = 4t2/U , but rather
as the exact energy difference between the triplet and
singlet states J = −(U − √

U2 + 16t2)/2. This view of
π-electron systems offers simple rationalizations of many
of their properties. In particular, a geometry-dependent
Heisenberg Hamiltonian (with J(r) depending on the dis-
tance r between sites) has been extracted from accurate
calculations of the singlet and triplet states of ethylene
and happens to be a quantitative tool for the ground
and lowest excited states of conjugated hydrocarbons [4,5]
(a spin-independent V (r) potential is of course also needed
in that case to take into account the r-dependences of the
localized σ-bonds). This analysis was proved in various
situations to be very predictive: for instance, the ground-
state geometries of a large series of hydrocarbones are ac-
curately reproduced by minimizing the lowest eigenvalue
of the geometry-dependent Hamiltonian with respect to
the bond distance [4]. It was also shown that the vertical
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Fig. 1. Two-leg ladder (A) and nω = 1 fused polyacene (B),
and their mapping into dimerized spin 1/2 chains. In this figure
and the following ones, the symbols ◦ and ∗ correspond to
up and down spins respectively; the resulting effective models
appear just below each lattice. We denote with a single- and
double-line the effective couplings when they are different. For
the graphitic ribbons, dotted lines separate the different blocks
used in the calculation (see text).

excitation spectrum to the lowest triplet states is in good
agreement with experiments [5] and that the excited state
geometries and vertical emission energies [5] agree with
accurate ab initio calculations. This magnetic model has
been widely and successfully used by Robb et al. [6] un-
der the acronym MM-VB (Molecular Mechanics Valence
Bond) for the study of the photochemistry of conjugated
hydrocarbons.

In fact, it is quite natural to expect, at least for bi-
partite lattices, the lowest excitation energies to be cor-
rectly described by a (properly normalized) Heisenberg
Hamiltonian as the lowest states are dominated by neutral
VB configurations and as the antisymmetrization favours
an antiferromagnetic order independently of the value of
U [7]. Of course, the charge excitations, essentially leading
to ionic states, are not accessible with these approaches,
but it is known for idealized 1D chains [8] and from ex-
periments on conjugated molecules [9] that the dipolarly-
allowed VB ionic states are located at higher energies than
the lowest triplet (and even than neutral singlet states).

We now only consider the purely magnetic model of
equation (1). A few years ago density matrix renormal-
ization group (DMRG) calculations have been reported,
concerning the singlet-triplet gap of the simplest poly-
acenic chain, built of aligned fused benzene rings [10]. The
extrapolated calculated gap is finite and close to 0.1J .
Actually the polyacene can be viewed as a two-leg lad-
der in which one rung over two has vanished (see Fig. 1).
One might wonder whether there is a similarity between
the three-leg ladder and a fused polyacenic infinite ribbon
with two ranks of benzene rings (see Fig. 3). From qualita-
tive arguments one may conjecture that the singlet-triplet
excitation in such polyacenic ribbons of graphite is finite
when the number of superposed rings in the width of the
ribbon, nω, is odd and vanishes when nω is even. Numeri-
cal calculations using the quantitative mapping on known
1-D chains, renormalized excitonic method (REM) [11],
and Quantum Monte Carlo calculations (QMC), show
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Fig. 2. Mapping of ladder and polyacene into a spin-1 chain.

that the gap indeed vanishes for even nω and is non-zero
for odd nω ribbons.

2 Qualitative arguments

Qualitative arguments can be used to rationalize the par-
ity law of ladders, which can also be applied to 1-D fused
polyacenes. They are based on the real-space renormaliza-
tion group (RSRG), originally proposed by Wilson [12].
Concerning spin lattices one may consider that they are
built from blocks rather than from sites. Of course these
blocks interact. If the blocks do not have a singlet ground
state, but a doublet, or a triplet, they can be seen as in-
teracting effective spins [13]. A quasi 1-D lattice can then
be easily transformed [14] into a simple 1-D spin chain,
the properties of which are well known. Considering 2-leg
ladders, one may define (2Ns +1) sites blocks, which have
a ground state doublet (Sz = ±1/2). But these blocks
do not have equal interactions with their left and right
nearest neighbors (cf. Fig. 1A). Consequently, the 2-leg
ladder maps into a dimerized (i.e., bond-alternated) spin
1/2 chain, which is known to be gapped. An alternative
partition uses blocks with even number of sites (Fig. 2A)
which have a triplet ground-state. The resulting effective
S = 1 chain exhibits the famous Haldane gap [15] and
therefore both partitions predict a gap.

If one applies the same arguments to the nω = 1 poly-
acenic chain one obtains a similar mapping pictured in
Figure 1B. The partition into blocks of (4NS + 1) sites
and (4NS+3) sites produces an alternating dimerized spin
chain, which is gapped. The partition into 4NS sites blocks
with triplet ground states (Fig. 2) leads to a Haldane
gap [15]. Both partitions suggest a finite excitation en-
ergy.

The ladder with odd number of legs can be partitioned
into blocks with odd number of sites which have equal
interactions with the left and right neighbors, and the
ladders can be mapped into a non-dimerized gapless 1-D
S = 1/2 chain, (cf. Fig. 3A). For the nω = 2 polyben-
zenöıd ribbon the simplest partition defines 9-site blocks
presenting a S = 1/2 ground state and equal AF interac-
tions with left and right nearest neighbors (cf. Fig. 3B).
The resulting mapping to an effective AF uniform chain
indicates that the nω = 2 polyacenic ribbon should not
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Fig. 3. Three-leg ladder (A) and nω = 2 fused polyacene (B),
and their mapping into spin 1/2 chains.
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Fig. 4. Generalization of the mappings on non-dimerized AF
S = 1/2 chains for even nω (A) and S = 1 chains for odd nω

(B). Moving the (∗) atom to the right-side block leads to an
effective dimerized S = 1/2 AF chain.

be gapped. This is actually one of the two possibilities
allowed by the famous Lieb-Schultz-Mattis theorem [16]
which can be applied for even nω (where the unit cell
contains an odd number of spin 1/2). If even nω lattices
do have a gap, this theorem guarantees that the system
breaks translation symmetry.

The arguments can easily be generalized to any thick-
ness of the ribbon according to Figure 4, which proposes
a mapping into an uniform S = 1/2 spin chain for even
values of nω and into an uniform integer-spin S chain for
odd nω. Of course the S = 1 chain may be transformed
into a dimerized chain of S = 1/2 blocks by shifting one
external carbon from one block to its right side neighbor
block.

3 Numerical studies

We now turn to numerical verifications of that conjecture
for nω = 1, 2 and 3 with several different techniques. Note
that DMRG calculations have already been performed for

the nω = 1 case [10]. For larger nω, the number of states
to be kept becomes too large and the computation cost
is prohibitive. Therefore, after providing quantitative es-
timates for the spin gap using approximate techniques,
we have addressed this issue by using an efficient QMC
method.

3.1 Mapping into 1-D chains

For nω = 1 the chain may be considered as built from
A and B blocks of 7 and 9, 9 and 11, 11 and 13, or 13
and 15 sites, according to Figure 1B. One then obtains
a dimerized S = 1/2 spin chain with different values J1,
J2 between the A–B and B–A blocks. The effective inter-
actions J1 and J2 are directly obtained from the energy
difference between the lowest triplet and singlet energies
of A–B and B–A blocks:

Blocks 7–9 9–11 11–13 13–15
J1 0.221 0.196 0.181 0.170
J2 0.166 0.123 0.095 0.075

A previous study of the dimerized S = 1/2 chain has
suggested that the gap follows the law [13]:

∆E = (J1 + J2)δ0.71 with δ =
(J1 − J2)
(J1 + J2)

. (2)

Applying equation (2) one obtains

∆E = 0.097J for the (7-9) blocks,
∆E = 0.112J for the (9-11) blocks,
∆E = 0.121J for the (11-13) blocks,
∆E = 0.126J for the (13-15) blocks,

hence a finite gap.
For nω = 2 the simple mapping into a non-dimerized

S = 1/2 AF spin chain of 9-site blocks (cf. Fig. 3B) pleads
in favor of a gapless character, but this construction as-
sumes only nearest-neighbor effective interaction JNN , ne-
glecting for instance next-nearest neighbors interactions
JNNN . In fact, an uniform AF chain becomes gapped
when the ratio JNNN/JNN is larger than 0.241 [17].
We have extracted the effective couplings between 9-site
blocks (Fig. 3B) from the exact spectrum of the trimer of
blocks and we found an AF coupling between NN blocks
JNN = 0.15896 (in good agreement with the value ex-
tracted from the dimer JNN = 0.16622) and a surprisingly
large ferromagnetic J ′

NNN = −0.1705 coupling. Since an
AF S = 1/2 chain with ferromagnetic coupling between
NNN sites is not gapped, the nω = 2 ribbon should be
gapless.

For nω = 3 one may define a dimerized AF S = 1/2
chain of 13 and 11 sites respectively as pictured in Fig-
ure 5. One obtains two values of the inter block AF cou-
pling (J1 = 0.115, J2 = 0.108). Using equation (2) one
obtains ∆E(nω = 3) = 0.018J .
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Fig. 5. Definition of the blocks for a mapping into a dimerized
S = 1/2 chain of nω = 3 ribbon.

3.2 Renormalized excitonic calculations

The recently proposed renormalized excitonic method [11]
is again based on a periodic partition into blocks, but now
the blocks have an even number of sites, a singlet ground
state ψ0

A and a triplet lowest excited state ψ∗
A. One defines

a model space for the AB dimers made of two adjacent
blocks, spanned by local singly excited states ψ∗

Aψ
0
B and

ψ0
Aψ

∗
B. Knowing the spectrum of the AB dimer, it is pos-

sible to define [18]

– the effective energy of ψ∗
Aψ

0
B and ψ0

Aψ
∗
B;

– the effective interaction between them.

These informations allow to apply the excitonic method.
For the infinite lattice, this method leads to the following
expressions of the excitation energy

∆E∞(NS) = 2∆E(2NS) −∆E(NS), (3)

obtained from the gap values for a NS-site block
(∆E(NS)) and for a dimer (∆E(2NS)).

The method has been applied with success to the 2-leg
ladders [14] and can be applied to nω = 1, nω = 2 and
nω = 3 polybenzenöıd ribbons using the design of the
blocks pictured in Figure 6.

We find a finite gap for nω = 1 polyacene:

∆E∞(8) = 0.068J for NS = 8 sites blocks;
∆E∞(12) = 0.094J for NS = 12 sites blocks.

Since theN−1
S components of the excitation energy cancels

in the expression of ∆E∞(NS), an extrapolation in terms
of N−2

S leads to ∆E(nω = 1) = 0.103J .
The result of the REM method for the nω = 2 lattice

from the NS = 12 sites blocks is one order of magnitude
smaller,∆E∞(12) = 0.013J . Extrapolation is not possible
in this problem, but this result supports the conjecture
that this fused polybenzenöıd ribbon is not gapped.

For nω = 3 unequal blocks of NS = 14 and NS = 10
sites have been used, according to Figure 6. Since the
blocks are different it is necessary to generalize the al-
gebra of reference [6], as performed in the Appendix. The
final result is ∆E∞(14, 10) = 0.0125J . Even if the results
for the gaps for nω = 2 and 3 are quite close, these cal-
culations support the idea of a contrast between the odd

nω = 1

nω = 2

nω = 3

Fig. 6. Definition of blocks for the calculation of the energy
gap through the REM.

and even ribbons. In order to confirm this conjecture, we
now present accurate Quantum Monte Carlo results for
the nw = 1, 2 and 3 ribbons.

3.3 Quantum Monte Carlo

As the spin lattices are not frustrated, efficient QMC
algorithms are available which allow to simulate with
high-precision large systems at finite, albeit extremely
small, temperatures. Here we use a multi-cluster continu-
ous time [19] loop algorithm [20] which is free of any sys-
tematic errors. We simulate systems of sizes up to length
L = 800 (the total number of spins is N = 2(nω+1)L) and
at inverse temperature up to βJ = J/T = 1000. We use
periodic boundary conditions along the legs. To determine
the gapfull/gapless nature of the systems, we calculate the
correlation length in imaginary time ξτ with the help of a
standard second moment estimator [21,22]

ξτ =
β

2π

(
χ(ω = 0)

χ(ω = 2π/β)
− 1

)1/2

(4)

where χ(ω) =
∫ β

0
dτeiωτχ(τ) is the Fourier-transform of

the imaginary time dynamical antiferromagnetic structure
factor χ(τ) = 1

βN

∑
i,j(−)rj−ri

∫ β

O dtSz
i (t)Sz

j (t+ τ). It can
be shown that for a gapped system, ξτ converges to the in-
verse spin gap in the thermodynamic limit at zero temper-
ature: limL,β→∞ ξτ (L, β) = (∆E)−1. On the other hand,
when the system is gapless, ξ−1

τ is an upper bound of the
finite-size gap for any finite L and β. In Figure 7, we rep-
resent the inverse of the imaginary time correlation length
(Jξτ )−1 as a function of the temperature T/J in log-log
scale, for the three types of ribbons nω = 1, 2 and 3. This
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Fig. 7. Quantum Monte Carlo results for the inverse of the
imaginary time correlation length as a function of temperature
for the nω = 1 (bottom panel), nω = 2 (middle panel) and
nω = 3 (top panel), for different system sizes L. Values of the
extracted gaps ∆E(nω = 1) = 0.1112(7)J and ∆E(nω = 3) =
0.0164(4)J are represented by dashed-lines for nω = 1 and 3.

representation is useful to see if the system is gapped as
(Jξτ )−1 saturates at low temperatures to the gap value
∆E/J .

For nω = 1, (Jξτ )−1 clearly converges at low T to
a minimum value identical for system sizes L = 100
and L = 200, indicating that finite-size effects are absent.
From the results for the largest L at the lowest T , we ex-
tract the value of the spin gap ∆E(nω = 1) = 0.1112(7)J ,
in perfect agreement with DMRG calculations [10].

We find no saturation of (Jξτ )−1 at the lowest tem-
perature for the largest system size L = 800 studied for
nω = 2. Data for smaller systems (L = 100, 200) present
signs of saturation at low enough T towards values which
depend on the system size: this is naturally interpreted as
the signature of finite-size gaps. Strictly speaking, the nu-
merical data for the largest L at the lowest T = 0.001J can
only put an upper bound ∆E(nω = 2) < 0.003J on the
value of the gap. However, the general form of the T de-
pendence of (Jξτ )−1 and the fact that we still have finite-
size effects for large systems at low T naturally indicate
that the nω = 2 system is gapless, i.e. ∆E(nω = 2) = 0.

Finally for nω = 3, a convergence of (Jξτ )−1 is recov-
ered at low enough T towards a size-independent constant.
As for the nω = 1 case, this indicates that the system
is gapped and we obtain the gap value ∆E(nω = 3) =
0.0164(4)J . Please note that we had to resort to large sys-
tems at very low temperatures (L = 800 and T = 0.001J)
to assert the complete convergence of our data: this is as-
cribed to the small value of the gap (an order of magnitude
lower than for nω = 1).

In conclusion, the QMC simulations unambiguously
prove the even/odd number nω effect for the gap-
less/gapfull nature of 1-D fused polyacenic ribbons. As for
spin ladders, we find that the value of the gap decreases
with the number nω of rings along the width for odd nω

ribbons.

Table 1. Calculed gaps (in units of J) obtained from different
methods.

Mapping REM QMC
nω = 1 0.126 0.103 0.1112(7)
nω = 2 0 0.013 0
nω = 3 0.018 0.0125 0.0164(4)

4 Conclusion

The conjecture of the existence of parity law concerning
the spin gap in polybenzenöıd ribbons (vanishing/finite
gap for even/odd nω) was proposed on the ground of qual-
itative arguments. This conjecture is confirmed by a con-
sistent set of numerical calculations summarized in Ta-
ble 1. The REM fails to give a zero gap for nω = 2 but
indicates a contrast between odd and even ribbons. The
quantitative mapping and the accurate QMC calculations
confirm the gapless character of the nω = 2 ribbons and
agree on the amplitude of the gap for nω = 1 and nω = 3.
For graphite ribbons [4,5], for which J ∼ 2.2 eV at the
typical rcc distance (1.395 Å), the gaps should be close
to 0.23 eV for nω = 1 and 0.03 eV for nω = 3. Despite
the semi-metallic nature of graphite, it seems unlikely that
the odd-nω ribbons present a zero charge gap, below their
finite spin-gap. We finally note, in analogy with the study
of the influence of four-spin operators in spin ladders [23],
that it would be worth considering the possible impact
of six-spin operators on such graphitic ribbons since their
amplitude is not negligible in hexagons [24,25].

The QMC calculations were performed using the looper
application [22] (see http://wistaria.comp-phys.org/

alps-looper) of the ALPS library [26] (see http://

alps.comp-phys.org). We warmly thank A. Läuchli for
suggesting the LSM argument for even nω.

Appendix A: Renormalized excitonic method
for an (A–B)n chain

One has two types of blocks A and B. The ground state
and lowest excited eigenfunctions for each block are given
by

HA|ψ0
A〉 = E0

A|ψ0
A〉,

HA|ψ∗
A〉 = E∗

A|ψ∗
A〉,

HB|ψ0
B〉 = E0

B |ψ0
B〉,

HB|ψ∗
B〉 = E∗

B |ψ∗
B〉.

The ground state of the chain is represented by

Ψ0 =
∏

i

ψ0
Ai

∏

j

ψ0
Bj
.

Its energy will be

〈Ψ0|Heff |Ψ0〉 = n(E0
A + E0

B) + n(vAB + vBA).
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The interaction energies between two adjacent blocks is
given by the knowledge of the exact energies of the AB
and BA dimers

HAB|Ψ0
AB〉 = E0

AB|Ψ0
AB〉, E0

AB = E0
A + E0

B + vAB.

For the description of excited states one needs to estimate
the effective interaction between a local excited state and
the neighbor ground states and the integral responsible for
the transfer of excitation. These informations are obtained
from the excited solutions of the dimers. One should es-
pecially consider the two eigenstates

HAB|Ψ∗
AB〉 = E∗

AB|Ψ∗
AB〉

HAB|Ψ∗′
AB〉 = E∗′

AB|Ψ∗′
AB〉,

having the largest projections |Ψ̃∗
AB〉 and |Ψ̃∗′

AB〉, on the
model space spanned by ψ∗

Aψ
0
B and ψ0

Aψ
∗
B , which can be

written after orthogonalization as

|Ψ̃∗
AB〉 = λ|ψ∗

Aψ
0
B〉 + µ|ψ0

Aψ
∗
B〉,

|Ψ̃∗′
AB〉 = −µ|ψ∗

Aψ
0
B〉 + λ|ψ0

Aψ
∗
B〉.

It results that

〈ψ∗
Aψ

0
B|Heff |ψ∗

Aψ
0
B〉 = λ2E∗

AB + µ2E∗′
AB

= E∗
A + E0

B + v(A∗)B,

〈ψ0
Aψ

∗
B|Heff |ψ0

Aψ
∗
B〉 = µ2E∗

AB + λ2E∗′
AB

= E0
A + E∗

B + vA(B∗),

〈ψ∗
Aψ

0
B|Heff |ψ0

Aψ
∗
B〉 = (E∗

AB − E∗′
AB)λµ = hAB.

For the periodic system the delocalized excited states will
be represented as linear combinations of locally excited
states on either A or B blocks

Ψ∗
Am

= ψ∗
Am

∏

i�=m

ψ0
Ai

∏

j

ψ0
Bj

Ψ∗
Bn

= ψ∗
Bn

∏

j �=n

ψ0
Bj

∏

i

ψ0
Ai
,

The energies of Ψ∗
Am

and Ψ∗
Bn

are given by

〈Ψ∗
Am

|Heff |Ψ∗
Am

〉 − 〈Ψ0|Heff |Ψ0〉 =

E∗
A − E0

A + v(A∗)B − vAB

〈Ψ∗
Bn

|Heff |Ψ∗
Bn

〉 − 〈Ψ0|Heff |Ψ0〉 =

E∗
B − E0

B + v(B∗)A − vBA.

This locally excited state are coupled with the states lo-
cally excited on the adjacent B blocks

〈Ψ∗
Am

|Heff |Ψ∗
Bm

〉 = hAB.

For the lowest state of the lattice, corresponding to
−→
k = 0,

the delocalized excited states can be written as a linear
combination of

(Ψ∗
a )−→

k =0
=

1√
N

∑

Am

Ψ∗
Am

,

and
(Ψ∗

b )−→
k =0

=
1√
N

∑

Bn

Ψ∗
Bn
,

solution of a 2 × 2 matrix whose elements are
〈
(Ψ∗

a )−→
k =0

∣∣∣Heff
∣∣∣(Ψ∗

a )−→
k =0

〉
−

〈
Ψ0

∣∣∣Heff
∣∣∣Ψ0

〉
=

E∗
A − E0

A + 2
(
V(A∗)B − VAB

)
,

〈
(Ψ∗

b )−→
k =0

∣∣∣Heff
∣∣∣(Ψ∗

b )−→
k =0

〉
−

〈
Ψ0

∣∣∣Heff
∣∣∣Ψ0

〉
=

E∗
B − E0

B + 2
(
V(B∗)A − VBA

)
,

〈
(Ψ∗

a )−→
k =0

∣∣∣Heff
∣∣∣(Ψ∗

b )−→
k =0

〉
= 2hAB.

References

1. E. Dagotto, T.M. Rice, Science 271, 618 (1996)
2. S.R. White, R.M. Noack, D.J. Scalapino, Phys. Rev. Lett.

73, 886 (1994)
3. See M. Matsumoto et al., Physica E 29, 660 (2005) and

references therein
4. M. Said, D. Maynau, J.-P. Malrieu, M.A.G. Bach, J. Am.

Chem. Soc. 106, 571 (1984)
5. M. Said, D. Maynau, J.-P. Malrieu, J. Am. Chem. Soc.

106, 580 (1984)
6. F. Jolibois, M.J. Bearpark, S. Klein, M. Olivucci, M.A.

Robb, J. Am. Chem. Soc. 122, 5801 (2000)
7. M.-B. Lepetit, B. Oujia, J.-P. Malrieu, D. Maynau, Phys.

Rev. A 39, 3274 (1989)
8. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)
9. B.S. Hudson, B.E. Kohler, K. Schulten, in Excited states,

edited by E.C. Lin, Vol. 6, (Academic, New York, 1982)
10. Y. Gao, C.-G. Liu, Y.-S. Jiang, J. Phys. Chem. A 106,

2592 (2002)
11. M. Al Hajj, J.-P. Malrieu, N. Guihéry, Phys. Rev. B 72,
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